



# $4.5\Omega$ Single Bilateral SPST Analog Switch

### 1 FEATURES

• Bandwidth: 300MHz

High Speed: Typically 30ns

Supply Range: +1.8V to +5.5V

Low ON-State Resistance: 4.5Ω(TYP)

• Rail-to-Rail Operation

• TTL/CMOS Compatible

• Extended Industrial Temperature

Range: -40°C to +125°C

Packages: SOT23-5, SC70-5

# **2 APPLICATIONS**

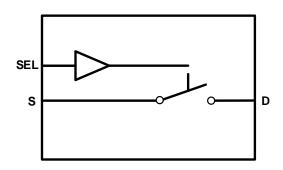
- Wireless Devices
- Audio and Video Signal Routing
- Portable Computing
- Wearable Devices
- Signal Gating, Chopping, Modulation or Demodulation (Modem)
- Cell Phones

## **3 DESCRIPTIONS**

The RES74LVC1G66 is a bidirectional 1-c hannel single-pole single-throw (SPST) analog switch, which is designed to operate from 1.8V to 5.5V.

The RES74LVC1G66device can hand I e both ana I ogandd i gital signals. It features bandwidth (300MHz) and low onresistance ( $4.5\Omega$  TYP).

Each switch section has its own enable-input control (SEL). A high-level voltage applied to SEL turns on the associated switch section.


Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

#### Device Information (1)

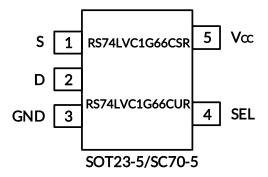
| PART NUMBER     | PACKAGE | BODY SIZE(NOM) |
|-----------------|---------|----------------|
| RES74LVC1G66CUR | SOT23-5 | 2.90mm×1.60mm  |
| RES74LVC1G66CSR | SC70-5  | 2.00mm×1.25mm  |

<sup>(1)</sup> For all available packages, see the orderable addendum at the end of the data sheet.

# 4 FUNCTIONAL DIAGRAMS OF RES74LVC1G66






# 6 PACKAGE/ORDERING INFORMATION (1)

| PRODUCT   | ORDERING NUMBER | TEMPERATURE<br>RANGE | PACKAGE<br>LEAD | PACKAGE<br>MARKING (2) | MSL (3) | PACKAGE OPTION      |
|-----------|-----------------|----------------------|-----------------|------------------------|---------|---------------------|
| RES74IG66 | RES74LVC1G66CUR | -40°C ~+125°C        | SOT23-5         | RES74LVC1G66CUR        | MSL3    | Tape and Reel, 3000 |
|           | RES74LVC1G66CSR | -40°C ~+125°C        | SC70-5 (4)      | RES74LVC1G66CSR        | MSL3    | Tape and Reel, 3000 |

#### NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.
- (4) Equivalent to SOT353.

# **7 PIN CONFIGURATIONS**



## 7.1 Pin Description

| NAME            | RS74LVC1G66CS/CUR<br>SOT23-5/SC70-5 | I/O | DESCRIPTION                           |
|-----------------|-------------------------------------|-----|---------------------------------------|
| S               | 1                                   | I/O | Bidirectional signal to be switched   |
| D               | 2                                   | I/O | Bidirectional signal to be switched   |
| GND             | 3                                   | -   | Ground                                |
| SEL             | 4                                   | I   | Controls the switch (L = OFF, H = ON) |
| V <sub>CC</sub> | 5                                   | -   | Power Supply                          |

<sup>(1)</sup> I = Input, O = Output.

#### 7.2 Function Table

| SELECT INPUTS | CVALITATION      |  |  |  |
|---------------|------------------|--|--|--|
| SEL           | SWITCH STATUS    |  |  |  |
| High          | All Switches ON  |  |  |  |
| Low           | All Switches OFF |  |  |  |

NOTE: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions.



# **8 SPECIFICATIONS**

## 8.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

| SYMBOL            | PARAMETER                                         | PARAMETER                             |      |                      |      |
|-------------------|---------------------------------------------------|---------------------------------------|------|----------------------|------|
| V <sub>CC</sub>   | Supply Voltage (2)                                |                                       | -0.3 | 6.0                  |      |
| V <sub>IN</sub>   | Input Voltage (2) (3)                             |                                       | -0.3 | 6.0                  | V    |
| Vo                | Switch I/O Voltage (2) (3) (4)                    |                                       | -0.3 | V <sub>CC</sub> +0.3 |      |
| lık               | Control input clamp current                       | V <sub>I</sub> <0                     |      | -50                  |      |
| I <sub>I/OK</sub> | I/O port diode current                            | $V_{I/O}$ < 0 or $V_{I/O}$ > $V_{CC}$ |      | -50                  | A    |
| lτ                | On-state switch current                           | V <sub>IO</sub> =0 to V <sub>CC</sub> | -50  | 50                   | mA   |
|                   | Continuous current through V <sub>CC</sub> or GND |                                       | -100 | 100                  |      |
| 0                 | Package thermal impedance (5)                     | SOT23-5                               |      | 230                  | °C/W |
| θјд               | Package thermal impedance (9)                     |                                       | 380  | - C/VV               |      |
| Τυ                | Junction Temperature (6)                          | -40                                   | 150  | °C                   |      |
| $T_{stg}$         | Storage temperature                               |                                       | -65  | 150                  |      |

<sup>(1)</sup> Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

- (2) All voltages are with respect to ground, unless otherwise specified.
- (3) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (4) This value is limited to 5.5 V maximum.
- (5) The package thermal impedance is calculated in accordance with JESD-51.
- (6) The maximum power dissipation is a function of  $T_{J(MAX)}$ ,  $R_{\theta JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$ . All numbers apply for packages soldered directly onto a PCB.

## 8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

| -           |                         |                        | VALUE | UNIT |
|-------------|-------------------------|------------------------|-------|------|
| 1/.         |                         | Human-Body Model (HBM) | ±2000 | V    |
| $V_{(ESD)}$ | Electrostatic discharge | Machine Model (MM)     | ±300  | V    |



#### **ESD SENSITIVITY CAUTION**

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

# 8.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

| SYMBOL | PARAMETER             | MIN | MAX  | UNIT |
|--------|-----------------------|-----|------|------|
| Vcc    | Supply Voltage        | 1.8 | 5.5  | ٧    |
| TA     | Operating temperature | -40 | +125 | °C   |



# **8.4 Electrical Characteristics**

 $V_{CC} = 5.0 \text{ V or } 3.3 \text{V}$ , FULL= -40°C to +125°C, Typical values are at  $T_A = +25$ °C. (unless otherwise noted)

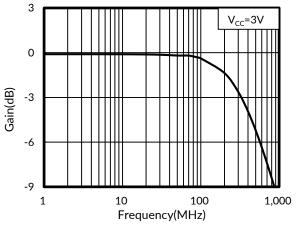
| PARAMETER                            | SYMBOL                                    | CONDITIONS                                                                              | Vcc         | TA    | MIN <sup>(2)</sup> | <b>TYP</b> (3) | MAX <sup>(2)</sup> | UNIT |
|--------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|-------------|-------|--------------------|----------------|--------------------|------|
| ANALOG SWITCH                        |                                           |                                                                                         |             |       |                    |                |                    |      |
| Analog Signal Range                  | Vs, V <sub>D</sub>                        |                                                                                         |             | FULL  | 0                  |                | Vcc                | V    |
|                                      |                                           |                                                                                         | <i>E</i> \/ | +25°C |                    | 4.5            | 8                  | Ω    |
| O- Di-t                              |                                           | $V_S = V_{CC}/2$ ,                                                                      | 5V          | FULL  |                    |                | 8.5                | Ω    |
| On-Resistance                        | Ron                                       | I <sub>SD</sub> = -10mA, Switch ON,<br>See Figure 4                                     | 2.207       | +25°C |                    | 7              | 10                 | Ω    |
|                                      |                                           |                                                                                         | 3.3V        | FULL  |                    |                | 10.5               | Ω    |
|                                      |                                           |                                                                                         | 5)./        | +25°C |                    | 2              | 3                  | Ω    |
|                                      |                                           | $0 \le (V_s) \le V_{CC} / 2$ ,<br>$I_{SD} = -10 \text{mA}$ , Switch ON,<br>See Figure 4 | 5V          | FULL  |                    |                | 3.3                | Ω    |
| On-Resistance Flatness               | Rflat(on)                                 |                                                                                         | 3.3V        | +25°C |                    | 3              | 4                  | Ω    |
|                                      |                                           |                                                                                         |             | FULL  |                    |                | 4.3                | Ω    |
| Source, Drain OFF<br>Leakage Current | I <sub>D(OFF)</sub> , I <sub>S(OFF)</sub> | $V_D = 0.3V$ , $V_{CC} / 2$ , $V_S = V_{CC} / 2$ , 0.3V See Figure 5                    | 1.8 to 5.5V | FULL  |                    |                | 1                  | μΑ   |
| Channel ON Leakage<br>Current        | ID(ON), Is(ON)                            | $V_D$ = 0.3V, Open $V_S$ = Open, 0.3V<br>See Figure 6                                   | 1.8 to 5.5V | FULL  |                    |                | 1                  | μΑ   |
| DIGITAL CONTROL INP                  | UTS (1)                                   |                                                                                         |             |       |                    |                |                    |      |
| In t                                 | \/                                        |                                                                                         | 5V          | FULL  | 1.5                |                |                    | V    |
| Input High Voltage                   | VIH                                       |                                                                                         | 3.3V        | FULL  | 1.3                |                |                    | ٧    |
| I                                    | V                                         |                                                                                         | 5V          | FULL  |                    |                | 0.6                | V    |
| Input Low Voltage                    | VIL                                       |                                                                                         | 3.3V        | FULL  |                    |                | 0.5                | V    |
| Input Leakage Current                | lin                                       | V <sub>IN</sub> = V <sub>IO</sub> or 0                                                  | 1.8 to 5.5V | FULL  |                    |                | 1                  | μΑ   |

<sup>(1)</sup> All unused digital inputs of the device must be held at  $V_{IO}$  or GND to ensure proper device operation.

<sup>(2)</sup> Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

<sup>(3)</sup> Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.




# **Electrical Characteristics (continued)**

 $V_{CC}$ = 5.0 V or 3.3V, FULL= -40°C to +125°C, Typical values are at  $T_A$  = +25°C (unless otherwise noted)

| PARAMETER                        | SYMBOL                                    | CONDITIONS                                     |                      | Vcc  | TA    | MIN | TYP | MAX | UNIT |  |  |
|----------------------------------|-------------------------------------------|------------------------------------------------|----------------------|------|-------|-----|-----|-----|------|--|--|
| DYNAMIC CHARACTERISTICS          |                                           |                                                |                      |      |       |     |     |     |      |  |  |
| Turn-On Time                     | 4                                         | $V_S = V_{CC}, R_L = 300\Omega, C$             | <sub>L</sub> = 35pF, | 5V   | +25°C |     | 30  |     |      |  |  |
| Turn-On Time                     | ton                                       | See Figure 7                                   |                      | 3.3V | +25°C |     | 40  |     | ns   |  |  |
| T 000T                           |                                           | $V_S = V_{CC}$ , $R_L = 300\Omega$ , $C$       | L = 35pF,            | 5V   | +25°C |     | 25  |     | nc   |  |  |
| Turn-Off Time                    | toff                                      | See Figure 7                                   |                      | 3.3V | +23 C |     | 30  |     | ns   |  |  |
| -3dB Bandwidth                   | BW                                        | Switch ON, $R_L = 50\Omega$ , S                | See Figure 8         |      | +25°C |     | 300 |     | MHz  |  |  |
| Off Isolation                    | 0                                         | $R_L = 50\Omega$ , Switch OFF,                 | f = 10MHz            |      | +25°C |     | -52 |     | dB   |  |  |
| Off isolation                    | Oiso                                      | See Figure 9                                   | f = 1MHz             |      | +25°C |     | -71 |     | dB   |  |  |
| Source, Drain OFF<br>Capacitance | C <sub>S(OFF)</sub> , C <sub>D(OFF)</sub> | V <sub>S</sub> = V <sub>CC</sub> /2 or GND, Sw | ritch OFF            |      | +25°C |     | 5   |     | pF   |  |  |
| Source, Drain ON<br>Capacitance  | C <sub>S(ON)</sub> , C <sub>D(ON)</sub>   | $V_S$ = $V_{CC}$ /2 or GND, Sw                 | ritch ON             |      | +25°C |     | 15  |     | pF   |  |  |
| POWER REQUIREMENT                | ГS                                        |                                                |                      |      |       |     |     |     |      |  |  |
| Power Supply Range               | Vcc                                       |                                                |                      |      | FULL  | 1.8 |     | 5.5 | V    |  |  |
| Power Supply Current             | Icc                                       | V <sub>IN</sub> = GND or Vcc                   |                      | 5.5V | FULL  |     |     | 1   | μΑ   |  |  |

# 8.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.



(B) -3 -6 -9 1 10 100 1,000 Frequency(MHz)

Figure 1. Bandwidth vs Frequency

Figure 2. Bandwidth vs Frequency

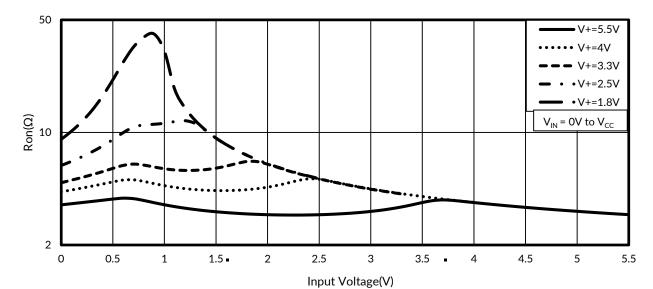



Figure 3. Typical Ron as a Function of Input Voltage



# 9 PARAMETER MEASUREMENT INFORMATION

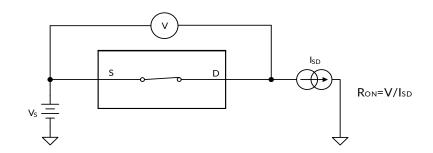



Figure 4. ON-State Resistance (RoN)

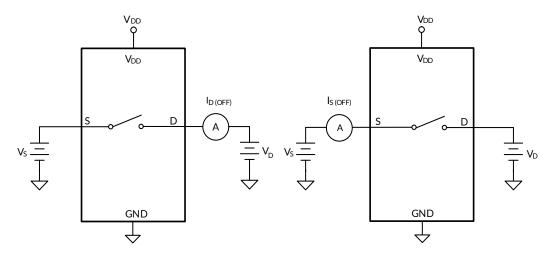



Figure 5. OFF-State Leakage Current (I<sub>D (OFF)</sub>, I<sub>S (OFF)</sub>)

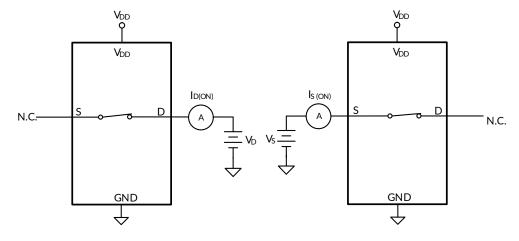



Figure 6. ON-State Leakage Current (I<sub>D (ON)</sub>, I<sub>S (ON)</sub>)



# **PARAMETER MEASUREMENT INFORMATION (continued)**

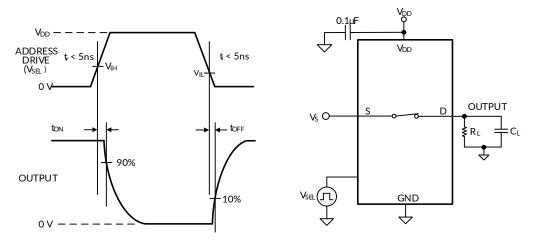



Figure 7. Turn-On (t<sub>ON</sub>) and Turn-Off Time (t<sub>OFF</sub>)

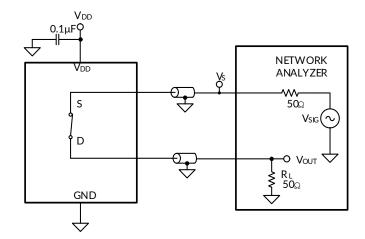



Figure 8. Bandwidth (BW)

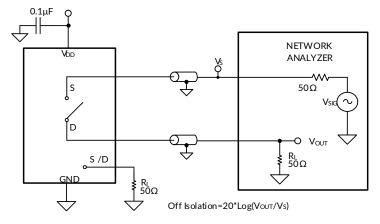



Figure 9. OFF Isolation (O<sub>ISO</sub>)



# 10 TYPICAL APPLICATION

The RES74LVC1G66 canbeus edin anysituat ionwherean SPSTs wit chw ould beus eda a solid-state, voltage-controlled version is preferred. The RS74LVC1G66 all ow sonand off control of an abgand digital swith a digital control signal. All input signals should remain between 0V and  $V_{\rm CC}$  for optimal operation.

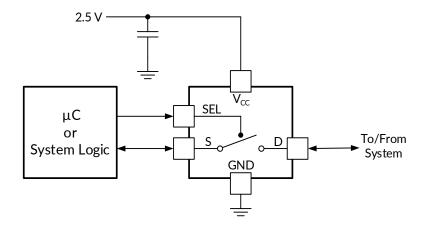
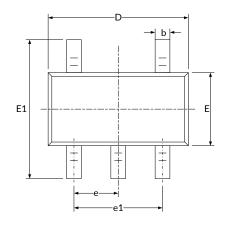
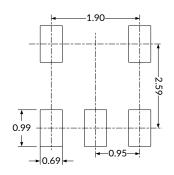
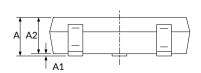
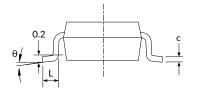





Figure 10. Typical Application Schematic





# 11 PACKAGE OUTLINE DIMENSIONS SOT23-5 (3)

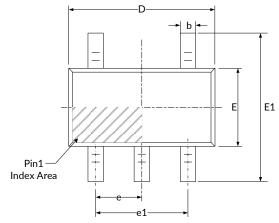


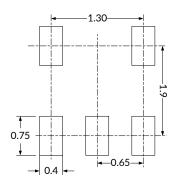


### **RECOMMENDED LAND PATTERN (Unit: mm)**

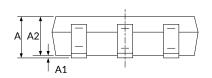


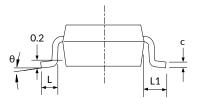



| Complete | Dimensions I | n Millimeters | Dimension | s In Inches |
|----------|--------------|---------------|-----------|-------------|
| Symbol   | Min          | Max           | Min       | Max         |
| A (1)    | 1.050        | 1.250         | 0.041     | 0.049       |
| A1       | 0.000        | 0.100         | 0.000     | 0.004       |
| A2       | 1.050        | 1.150         | 0.041     | 0.045       |
| b        | 0.300        | 0.500         | 0.012     | 0.020       |
| С        | 0.100        | 0.200         | 0.004     | 0.008       |
| D (1)    | 2.820        | 3.020         | 0.111     | 0.119       |
| E (1)    | 1.500        | 1.700         | 0.059     | 0.067       |
| E1       | 2.650        | 2.950         | 0.104     | 0.116       |
| е        | 0.950(       | BSC) (2)      | 0.037(    | BSC) (2)    |
| e1       | 1.800        | 2.000         | 0.071     | 0.079       |
| L        | 0.300        | 0.600         | 0.012     | 0.024       |
| θ        | 0°           | 8°            | 0°        | 8°          |


#### NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.





# SC70-5 (3)



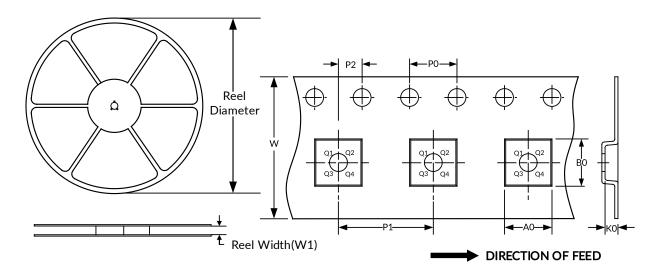


# **RECOMMENDED LAND PATTERN (Unit: mm)**





| Complete | Dimensions I | n Millimeters | Dimension   | s In Inches |  |
|----------|--------------|---------------|-------------|-------------|--|
| Symbol   | Min          | Max           | Min         | Max         |  |
| A (1)    | 0.900        | 1.100         | 0.035       | 0.043       |  |
| A1       | 0.000        | 0.100         | 0.000       | 0.004       |  |
| A2       | 0.900        | 1.000         | 0.035       | 0.039       |  |
| b        | 0.150        | 0.350         | 0.006       | 0.014       |  |
| С        | 0.080        | 0.150         | 0.003       | 0.006       |  |
| D (1)    | 2.000        | 2.200         | 0.079       | 0.087       |  |
| E (1)    | 1.150        | 1.350         | 0.045       | 0.053       |  |
| E1       | 2.150        | 2.450         | 0.085       | 0.096       |  |
| е        | 0.650(       | BSC) (2)      | 0.026(      | BSC) (2)    |  |
| e1       | 1.300(       | BSC) (2)      | 0.051(      | BSC) (2)    |  |
| L        | 0.260        | 0.460         | 0.010 0.018 |             |  |
| L1       | 0.5          | 525           | 0.0         | )21         |  |
| θ        | 0°           | 8°            | 0°          | 8°          |  |


#### NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.



# 12 TAPE AND REEL INFORMATION REEL DIMENSIONS

# **TAPE DIMENSION**



NOTE: The picture is only for reference. Please make the object as the standard.

# **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel<br>Diameter | Reel<br>Width(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|-------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| SOT23-5      | 7"               | 9.5               | 3.20       | 3.20       | 1.40       | 4.0        | 4.0        | 2.0        | 8.0       | Q3               |
| SC70-5       | 7"               | 9.5               | 2.25       | 2.55       | 1.20       | 4.0        | 4.0        | 2.0        | 8.0       | Q3               |

## NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.